monomial$50140$ - определение. Что такое monomial$50140$
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое monomial$50140$ - определение

POLYNOMIAL WITH FINITELY MANY TERMS OF THE FORM AXⁿ WHERE N ∈ ℕ
Laurent polynomials; Laurent monomial

Monomial         
POLYNOMIAL WHICH HAS ONLY ONE TERM
Monomials; Simple expression; Mononomial; Degree of a monomial; Power product
In mathematics, a monomial is, roughly speaking, a polynomial which has only one term. Two definitions of a monomial may be encountered:
Monomial         
POLYNOMIAL WHICH HAS ONLY ONE TERM
Monomials; Simple expression; Mononomial; Degree of a monomial; Power product
·adj Consisting of but a single term or expression.
II. Monomial ·noun A single algebraic expression; that is, an expression unconnected with any other by the sign of addition, substraction, equality, or inequality.
Mononomial         
POLYNOMIAL WHICH HAS ONLY ONE TERM
Monomials; Simple expression; Mononomial; Degree of a monomial; Power product
·noun & ·adj Monomyal.

Википедия

Laurent polynomial

In mathematics, a Laurent polynomial (named after Pierre Alphonse Laurent) in one variable over a field F {\displaystyle \mathbb {F} } is a linear combination of positive and negative powers of the variable with coefficients in F {\displaystyle \mathbb {F} } . Laurent polynomials in X form a ring denoted F [ X , X 1 ] {\displaystyle \mathbb {F} [X,X^{-1}]} . They differ from ordinary polynomials in that they may have terms of negative degree. The construction of Laurent polynomials may be iterated, leading to the ring of Laurent polynomials in several variables. Laurent polynomials are of particular importance in the study of complex variables.